Using iTunes. How to do I make mp3 files out of mp4 files - using cds?

Miikerman, I am not quite sure what is the best method. vbr or cbr. I see your point though.  maybe it makes sense to use vbr with certain genre.

A great debate. VBR (variable bit rate) or CBR (Constant)?

I did little search. the following has been copied and pasted from different people:

**Constant Bit Rate (CBR) - the same bit rate is used to encode the entire file.

Variable Bit Rate (VBR) - Mp3 files are made up from 100’s of small audio chunks, called frames. Whilst encoding a VBR file, the encoder decides which bit rate to use for each frame. The bit rate can drop down to lower value when it is permissible (if there is not much audio going on), and switches up to a higher value when required. VBR files are not all good news though, because the bit rate is constantly changing many players have difficulty displaying correct track lengths. A standard exists where the track length is encoded into the first frame after writing, though not all encoders do this and the ID3v2 tag can mess this up.**

CBR better…

All transcoding between lossy formats will lead to further loss of quality.

Unless you want to lower the overall bitrate significantly, you shouldn’t bother. Or if you have a portable device that cannot handle VBR.

**CBR, each frame is a set size
VBR, using physoacoustic models the encodered determines how many bits are needed to encode each frame. Most encoders let you set a range of bit rates, however the best encoder LAME has a set of built in standard (–alt-present (standard/extreme/[insane]) that it can use. Standard and extreme are both VBR with outputs that range around 220 for standard and 240 for extreme. Insane is 320CBR with high and low pass filters applied iirc. When a bit range limit is applied the encoder will only go down or up to that bit rate even if the frame needs less or more bits to be encoded properly. For this reason aps and apx uses a bit range of 32-320 (the “standard” mins and max for MP3 encoding).

The prolbem with VBR is that poor coding in windows prevents it from reading the bit rate correctly (winamp can read it correctly) and a lot of portable players cannot interpert the time correctly. They see the first frame (or an incorrect repersentation of the avg bit rate) as being something like 32kbps and then divide the total size (say 6MB) by that to get the (incorrect) time. While this shouldn’t/doesn’t affect the playing of files it is anoying. Overall VBR still will give you better sound quality for the storage space.**

In CBR (Constant Bitrate) encoding, the bitrate is kept constant across the entire file: the same number of bits is allocated to encode each second of audio, and internally, frames of audio data occur at regular, predictable intervals, so the overall file size for a given duration of audio is predictable. CBR is therefore the “opposite” of VBR.

That said, in some formats there may be some variability in the number of bits that contain actual audio information from frame to frame. This concept manifests in the bit reservoir of MP3s. In a CBR MP3, even though the frames are of a fixed size, the audio data is not necessarily distributed consistently between them; audio for one frame might use fewer bits than the frame has, so that frame ‘adds’ the spare bits to a ‘reservoir’ that can supplement the bits allocated to the next frame. Thus, the effective bitrate is allowed to vary somewhat in a CBR MP3, even though there is a fixed number of frames for the duration of audio. The bitrate of a single frame can be up to 320 kbps, but the frame that immediately follows that one would have to use fewer bits, whereas in VBR, there would be no such restriction. Consequently, the amount of variability across the entire MP3 is not as great as that afforded by VBR, but it is not insignificant; a CBR encoder that does not efficiently use the reservoir will likely produce a lower quality file than one that does.

Unlike in VBR, the perceived quality of decoded audio will tend vary across a CBR file. This is because CBR encoding is similar to the ABR form of VBR encoding in that it is normally based only on a target bitrate and analysis of the input audio; there’s usually no attempt to use the absolute lowest possible bitrate at which a particular output quality level would be maintained. Technically, CBR implementations always do incorporate a prediction of output quality, but it is based on fixed algorithms rather than trial-and-error testing of actual results as is done in VBR.

Who should use CBR

  • CBR is useful for people who are concerned about maintaining maximum compatibility, especially with certain streaming applications and some hardware-based decoders that don’t reliably support VBR.
  • CBR is also useful for people who desire the ability to obtain accurate estimates of the bitrate or approximate duration of a file’s decoded audio without scanning and partially decoding the entire file.

Advocates of VBR, especially on the hydrogenaudio forums, are often very vocally anti-CBR, and often say that no one should ever use CBR, when given the choice. Some reasonably argue that the point of using a compression algorithm, especially in a lossy codec like MP3, is to conserve as many bits as possible while maintaining a certain quality level, so CBR’s tendency to use more bits than is necessary in simple passages and to use too few for complex passages is wasteful and bound to produce worse results (in the complex passages, at least) than VBR. The fact that CBR implementations rarely take actual, rather than predicted, output quality into account is pointed to as another reason to avoid CBR.

However, these arguments need to be carefully qualified in order to be meaningful, and it would be incorrect to infer that there are inherent quality differences between CBR and VBR.

In general, however, for most types of input, assuming identical input, identical encoding methods, and sensible targets for VBR quality and bitrate bounds, VBR will almost always produce equal or better perceived-quality results than CBR for files of the same size or average bitrate , and this has been demonstrated in numerous double-blind listening tests. For example, using the same encoder, a 128 kbps CBR MP3 will almost never sound better than a VBR MP3 that averages 128 kbps, because in VBR, the simple parts of audio can be better compressed than in CBR, thereby allowing more bits to be available for the complex parts. On the other hand, since the simpler parts of the file sound better in the CBR version and the complex parts will sound be better in the VBR version, comparing even similar-bitrate files can be a very subjective experience.

CBR can exceed the quality of VBR if the comparison is not constrained to an average bitrate, or if the VBR encoding method does not take into account actual output quality. For example, a 256 kbps CBR MP3 containing moderately complex audio is likely to sound noticeably better, overall, than a similarly-encoded VBR one that averages 128 kbps, even though the VBR one may use up to 320 kbps in some frames. And even when VBR does measure output quality, there is a margin of error, especially when relying on perceptual psychoacoustic models, so the encoder (even the much-revered LAME) can accidentally overcompress some segments, depending on the characteristics of the audio, the quality and bitrate constraints imposed, and the capabilities of the particular encoder. At high bitrates, the quality difference between typical CBR and VBR files approaches zero, so, for some users, CBR is perfectly acceptable, especially if maximum conservation of space is not a concern.

At low average bitrates, the quality difference between CBR and VBR is more pronounced, given the same input, so VBR is often more desirable for applications that need a great deal of compression.

If input need not be the same, then VBR also makes it possible to keep the same approximate quality level as CBR but increase the frequency range of the input, which is often considered an increase in perceived quality even though there may be just as much quantization noise. For example, a ~96 kbps VBR file could use a 12.5 kHz lowpass filter on the input and have about the same percentage of noise as a 96 kbps CBR file with an 11.5 kHz filter. Depending on the listener’s sensitivity to noise in the additional upper 1 kHz, a higher overall quality level would likely be perceived due to the mere presence of those upper frequencies (assuming they contain audio that the listener wants to hear).

Constant bit rate (CBR) encoding persists the set data rate to your setting over the whole video clip. Use CBR only if your clip contains a similar motion level across the entire duration.  CBR is most commonly used for streaming video content using the Flash Media Server (rtmp)

Variable bit rate (VBR) encoding adjusts the data rate down and to the upper limit you set, based on the data required by the compressor. VBR takes longer to encode but produces the most favorable results.  VBR is most commonly used for http delivery if video content (http progressive)

VBR is superior. CBR is 20th century tech.:wink:

Marvin_Martian wrote:
VBR is superior. CBR is 20th century tech.:wink:

There’s a lot of 20th century things (tech included) that I actually prefer over the latest & greatest.

Sometimes Old School Rules! :wink:

Tapeworm wrote:


Marvin_Martian wrote:
VBR is superior. CBR is 20th century tech.:wink:


 

There’s a lot of 20th century things (tech included) that I actually prefer over the latest & greatest.

 

Sometimes Old School Rules! :wink:

You know how that makes you sound?

:dizzy_face::smileyvery-happy::stuck_out_tongue: 

Marvin_M;

Have you tried to rip the same song with vbr and cbr at the same bit rate? I’d like to know the difference with file size? can you hear the difference? 

I am planning to do this when I get a chance. Apparently, vbr gives better results with Lame Encoder’s improvements.

Stepk wrote:

Marvin_M;

 

Have you tried to rip the same song with vbr and cbr at the same bit rate? I’d like to know the difference with file size? can you hear the difference? 

 

I am planning to do this when I get a chance. Apparently, vbr gives better results with Lame Encoder’s improvements.

Can I hear the difference? No. As far as a size comparison, that all depends on the music. A single person singing and playing an acoustic guitar, that file would be a file that could save a lot of space, in comparison, a heavy metal tune with three guitarists wailing away, along with a singer and drummer and bassist, the difference would not be so great. My computer is acting a little bit temperamental today, or else I would do a couple conversions to give you an example.

Marvin_Martian wrote:

You know how that makes you sound?

:dizzy_face::smileyvery-happy::stuck_out_tongue: 

 

Wiser? More experineced? Worldly? Guru-like?

!(file:///C:/DOCUME%7E1/Paul/LOCALS%7E1/Temp/moz-screenshot.png)

Respect 'yer elders, you young whipper-snapper!

And get me another beer while 'yer at it. :stuck_out_tongue:

Marvin_Martian wrote:

You know how that makes you sound?

:dizzy_face: :smileyvery-happy: :stuck_out_tongue: 

 

Wiser? More experienced? Worldly? Even Guru-like?

Respect 'yer elders, you young whipper-snapper!

And get me another beer while 'yer at it. :stuck_out_tongue:

When I first started ripping my CDs, I tested different bitrates and methods.  I found that MP3 lame VBR produced the best sound for me in the least amount of space, in the format I then wanted (MP3). 

Stepk - Thank you so much for taking the trouble to give me details on how to use that programme.   I am going to run them off and keep them for future reference.   In fact you have persuaded me *not* to convert my files, due to the loss in quality.   I’ve decided I’m just going to cut my losses and move on.   I have now set up iTunes so that anything I take onto my computer in future will be in the form of mp3 files - and that is the stuff I will put onto my Sansa clip. 

For some reason (& I am very curious as to why this is), some of the existing music files on my computer are already mp3s.   How can this be if I have imported all of them using iTunes, with a non-mp3 import setting?   Anyway, whilst the bulk of my files are mp4s, some of them are mp3s.   I will put the latter on my Sansa clip.

Thank you again for all your help!

One other thing Stepk…   When you say “I won an ipod years ago. So, I naturally converted my CD’s into aac files. Then, I used itunes to convert them into mp3’s. (almost 32 GB!). I could tell the difference! New mp3 files were still good, but not as good as the aac files.”   Do you mean the mp3 files were not as good as the original mp4 files, or are acc files something else?

Apologies for being so ignorant!

Message Edited by Poppy on 05-15-2010 11:05 AM

Hello Poppy;

The mp3 (128kbps) files I converted from itunes’ aac (advanced audio code?) do not sound as good as aac’s I created using my store purchased cd’s. I am not saying they sound bad. But, you are much better off ripping once unless of course you create flac files. That’s what I am currently doing now. Flac is pretty much lossless. But they are big files. After I create them ,I move them to my external drive. in the future, I will convert them into anything I want without changing anything with the original flac files. I am pretty sure amplifier manufacturers will come up with an amplifier that will read these flac files thru usb port. That will be incredibly convenient, scanning those flac files on the amp’s display and playing anything you want.

mp3’s in my opinion are great if you play them in a portable player or a car stereo. If you connect the player to your amp, you won’t be satisfied. 

I should have said m4a files instead of aac files. I copied some audio guru’s explanation, and pasting it.

  1. AAC stands for either MPEG2 Advanced Audio Coding or MPEG4 Advanced Audio Coding.
    The MPEG2 audio-encoding standard of the format is not backward-compatible with MPEG1 audio. MPEG2 AAC can produce better audio quality than MP3 using less physical space for the files. MPEG4 AAC can produce better quality and smaller files than MPEG2 AAC. AAC is the audio file format used by Apple in their popular iTunes Music Store

  2. The audio file format used by Apple in their popular iTunes Music Store often appears on your system with the “.M4A” filename extension. M4A can produce better audio quality than MP3 using less physical space for the files

  3. M4P format is “protected AAC”. It is a format of purchased music that can be listened to only through the iTunes softer or an iPod.

Hi Stepk,

Thank you very much for all of that.   I understand the process much more clearly now, and the limitations of converting mp4s to mp3s.

I have one outstanding query left.

How is it that some of the existing files in my iTunes library are mp4s, and others are mp3s?   Surely iTunes would have ripped all the cds on the same setting?

edit:  Actually, not sure I know why iTunes would do that.  Perhaps the original format was different and so iTunes ripped them differently?  Or perhaps the settings got changed?

Message Edited by Miikerman on 05-22-2010 01:03 PM

Okay, that makes sense…  

Thank you very much for all your time and patience with my queries - it’s much appreciated.

@miikerman wrote:
MP4’s are protected by digital rights management; MP3’s are not.  Perhaps that reflects the nature of the original files?

Actual mp4s aren’t.  Only m4p’s have DRM, unless he renamed his files.   

Ulp, my mistake and bad.  Apologies.  

Hi, I think what you have done is correct. But if you still can’t replace MP4 with MP3 audio files on iTunes, you could go for a recorder and then rip audio from MP4 at first. After that, you only need to burn MP3 audio files onto CD straightly.